Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantum dots for single and entangled photon emitters

Identifieur interne : 000097 ( Russie/Analysis ); précédent : 000096; suivant : 000098

Quantum dots for single and entangled photon emitters

Auteurs : RBID : Pascal:11-0031979

Descripteurs français

English descriptors

Abstract

Efficient generation of polarized single or entangled photons is a crucial requirement for the implementation of quantum key distribution (QKD) systems. Self-organized semiconductor quantum dots (QDs) are capable of emitting one polarized photon or an entangled photon pair at a time using appropriate electrical current injection. We realized highly efficient single photon sources (SPS) based on well established semiconductor technology: In a pin structure a single electron and a single hole are funneled into a single InAs quantum dot using a submicron AlOx current aperture. Efficient radiative recombination leads to emission of single polarized photons with an all-time record purity of the spectrum. Non-classicality of the emitted light without using additional spectral filtering is demonstrated. Out-coupling efficiency and emission rate are increased by embedding the SPS into a micro-cavity of Q = 140. The design of the micro-cavity is based on detailed modeling to optimize its performance. The resulting resonant single-QD diode generates single polarized photons at a repetition rate of 1 GHz exhibiting a second order correlation function of g (2)(0) = 0. Eventually, QDs grown on (111) oriented substrate are proposed as source of entangled photon pairs. Intrinsic symmetry-lowering effects leading to the splitting of the exciton bright states are shown to be absent for this substrate orientation. As a result the XX → X → 0 recombination cascade of a QD can be used for the generation of entangled photons without further tuning of the finestructure splitting via QD size and/or shape. We present first micro-photoluminescence studies on QDs grown on (111) GaAs, demonstrating a fine structure splitting less than the spectral resolution of our set-up.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0031979

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Quantum dots for single and entangled photon emitters</title>
<author>
<name sortKey="Bimberg, D" uniqKey="Bimberg D">D. Bimberg</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>TU-Berlin, Hardenbergstr. 36</s1>
<s2>10623 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stock, E" uniqKey="Stock E">E. Stock</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>TU-Berlin, Hardenbergstr. 36</s1>
<s2>10623 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lochmann, A" uniqKey="Lochmann A">A. Lochmann</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>TU-Berlin, Hardenbergstr. 36</s1>
<s2>10623 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schliwa, A" uniqKey="Schliwa A">A. Schliwa</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>TU-Berlin, Hardenbergstr. 36</s1>
<s2>10623 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Unrau, W" uniqKey="Unrau W">W. Unrau</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>TU-Berlin, Hardenbergstr. 36</s1>
<s2>10623 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="M Nnix, M" uniqKey="M Nnix M">M. M Nnix</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>TU-Berlin, Hardenbergstr. 36</s1>
<s2>10623 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rodt, S" uniqKey="Rodt S">S. Rodt</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>TU-Berlin, Hardenbergstr. 36</s1>
<s2>10623 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Toropov, A I" uniqKey="Toropov A">A. I. Toropov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Semiconductor Physics, Lavrenteva av 13</s1>
<s2>Novosibirsk 630090</s2>
<s3>RUS</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>Novosibirsk 630090</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bakarov, A" uniqKey="Bakarov A">A. Bakarov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Semiconductor Physics, Lavrenteva av 13</s1>
<s2>Novosibirsk 630090</s2>
<s3>RUS</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>Novosibirsk 630090</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kalagin, A K" uniqKey="Kalagin A">A. K. Kalagin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Semiconductor Physics, Lavrenteva av 13</s1>
<s2>Novosibirsk 630090</s2>
<s3>RUS</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>Novosibirsk 630090</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Haisler, V A" uniqKey="Haisler V">V. A. Haisler</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Semiconductor Physics, Lavrenteva av 13</s1>
<s2>Novosibirsk 630090</s2>
<s3>RUS</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>Novosibirsk 630090</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0031979</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 11-0031979 INIST</idno>
<idno type="RBID">Pascal:11-0031979</idno>
<idno type="wicri:Area/Main/Corpus">003825</idno>
<idno type="wicri:Area/Main/Repository">003A31</idno>
<idno type="wicri:Area/Russie/Extraction">000097</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0277-786X</idno>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aperture</term>
<term>Binary compounds</term>
<term>Correlation functions</term>
<term>Entangled states</term>
<term>Excitons</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Implementation</term>
<term>Indium Arsenides</term>
<term>Nanostructured materials</term>
<term>Photoluminescence</term>
<term>Photon pair</term>
<term>Quantum communication</term>
<term>Quantum dots</term>
<term>Quantum key distribution</term>
<term>Self organization</term>
<term>Semiconductor quantum dots</term>
<term>Semiconductor technology</term>
<term>Single photon</term>
<term>Single photon source</term>
<term>Spectral resolution</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Distribution quantique clé</term>
<term>Etat intriqué</term>
<term>Exciton</term>
<term>Photoluminescence</term>
<term>Source photon unique</term>
<term>Communication quantique</term>
<term>Fonction corrélation</term>
<term>Composé binaire</term>
<term>Indium Arséniure</term>
<term>Semiconducteur III-V</term>
<term>Résolution spectrale</term>
<term>Point quantique</term>
<term>Nanomatériau</term>
<term>Implémentation</term>
<term>Autoorganisation</term>
<term>Point quantique semiconducteur</term>
<term>Technologie semiconducteur</term>
<term>Composé III-V</term>
<term>Ouverture optique</term>
<term>InAs</term>
<term>GaAs</term>
<term>As In</term>
<term>As Ga</term>
<term>0130C</term>
<term>8107T</term>
<term>8107B</term>
<term>6146</term>
<term>8565</term>
<term>0367H</term>
<term>7135</term>
<term>7867</term>
<term>8535B</term>
<term>Paire photons</term>
<term>Photon unique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Efficient generation of polarized single or entangled photons is a crucial requirement for the implementation of quantum key distribution (QKD) systems. Self-organized semiconductor quantum dots (QDs) are capable of emitting one polarized photon or an entangled photon pair at a time using appropriate electrical current injection. We realized highly efficient single photon sources (SPS) based on well established semiconductor technology: In a pin structure a single electron and a single hole are funneled into a single InAs quantum dot using a submicron AlOx current aperture. Efficient radiative recombination leads to emission of single polarized photons with an all-time record purity of the spectrum. Non-classicality of the emitted light without using additional spectral filtering is demonstrated. Out-coupling efficiency and emission rate are increased by embedding the SPS into a micro-cavity of Q = 140. The design of the micro-cavity is based on detailed modeling to optimize its performance. The resulting resonant single-QD diode generates single polarized photons at a repetition rate of 1 GHz exhibiting a second order correlation function of g
<sup>(2)</sup>
(0) = 0. Eventually, QDs grown on (111) oriented substrate are proposed as source of entangled photon pairs. Intrinsic symmetry-lowering effects leading to the splitting of the exciton bright states are shown to be absent for this substrate orientation. As a result the XX → X → 0 recombination cascade of a QD can be used for the generation of entangled photons without further tuning of the finestructure splitting via QD size and/or shape. We present first micro-photoluminescence studies on QDs grown on (111) GaAs, demonstrating a fine structure splitting less than the spectral resolution of our set-up.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA02 i1="01">
<s0>PSISDG</s0>
</fA02>
<fA03 i2="1">
<s0>Proc. SPIE Int. Soc. Opt. Eng.</s0>
</fA03>
<fA05>
<s2>7610</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Quantum dots for single and entangled photon emitters</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Quantum dots and nanostructures : synthesis, characterization, and modeling VII</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>BIMBERG (D.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>STOCK (E.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LOCHMANN (A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SCHLIWA (A.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>UNRAU (W.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>MÜNNIX (M.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>RODT (S.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>TOROPOV (A. I.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>BAKAROV (A.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>KALAGIN (A. K.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>HAISLER (V. A.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>EYINK (Kurt Gerard)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SZMULOWICZ (Frank)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>HUFFAKER (Diana Lynne)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>TU-Berlin, Hardenbergstr. 36</s1>
<s2>10623 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of Semiconductor Physics, Lavrenteva av 13</s1>
<s2>Novosibirsk 630090</s2>
<s3>RUS</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>SPIE</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>76100G.1-76100G.13</s2>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>SPIE</s1>
<s2>Bellingham, Wash.</s2>
</fA25>
<fA26 i1="01">
<s0>978-0-8194-8006-4</s0>
</fA26>
<fA26 i1="02">
<s0>0-8194-8006-1</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000174695790020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>49 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0031979</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Efficient generation of polarized single or entangled photons is a crucial requirement for the implementation of quantum key distribution (QKD) systems. Self-organized semiconductor quantum dots (QDs) are capable of emitting one polarized photon or an entangled photon pair at a time using appropriate electrical current injection. We realized highly efficient single photon sources (SPS) based on well established semiconductor technology: In a pin structure a single electron and a single hole are funneled into a single InAs quantum dot using a submicron AlOx current aperture. Efficient radiative recombination leads to emission of single polarized photons with an all-time record purity of the spectrum. Non-classicality of the emitted light without using additional spectral filtering is demonstrated. Out-coupling efficiency and emission rate are increased by embedding the SPS into a micro-cavity of Q = 140. The design of the micro-cavity is based on detailed modeling to optimize its performance. The resulting resonant single-QD diode generates single polarized photons at a repetition rate of 1 GHz exhibiting a second order correlation function of g
<sup>(2)</sup>
(0) = 0. Eventually, QDs grown on (111) oriented substrate are proposed as source of entangled photon pairs. Intrinsic symmetry-lowering effects leading to the splitting of the exciton bright states are shown to be absent for this substrate orientation. As a result the XX → X → 0 recombination cascade of a QD can be used for the generation of entangled photons without further tuning of the finestructure splitting via QD size and/or shape. We present first micro-photoluminescence studies on QDs grown on (111) GaAs, demonstrating a fine structure splitting less than the spectral resolution of our set-up.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00A30C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07T</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B00C67H</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70A35</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Distribution quantique clé</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Quantum key distribution</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Etat intriqué</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Entangled states</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Exciton</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Excitons</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Source photon unique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Single photon source</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Communication quantique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Quantum communication</s0>
<s5>17</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Fonction corrélation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Correlation functions</s0>
<s5>23</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>50</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>50</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Indium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Indium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>52</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>52</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Résolution spectrale</s0>
<s5>61</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Spectral resolution</s0>
<s5>61</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>62</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>62</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>63</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>63</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Implémentation</s0>
<s5>64</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Implementation</s0>
<s5>64</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Autoorganisation</s0>
<s5>65</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Self organization</s0>
<s5>65</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Autoorganización</s0>
<s5>65</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Point quantique semiconducteur</s0>
<s5>66</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Semiconductor quantum dots</s0>
<s5>66</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Technologie semiconducteur</s0>
<s5>67</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Semiconductor technology</s0>
<s5>67</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>68</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>68</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>68</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Ouverture optique</s0>
<s5>69</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Aperture</s0>
<s5>69</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Abertura óptica</s0>
<s5>69</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>As In</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>As Ga</s0>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>0130C</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>8107T</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>6146</s0>
<s4>INC</s4>
<s5>86</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>8565</s0>
<s4>INC</s4>
<s5>87</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>0367H</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>7135</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>7867</s0>
<s4>INC</s4>
<s5>93</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>8535B</s0>
<s4>INC</s4>
<s5>94</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>Paire photons</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="33" i2="3" l="ENG">
<s0>Photon pair</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="34" i2="3" l="FRE">
<s0>Photon unique</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="34" i2="3" l="ENG">
<s0>Single photon</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fN21>
<s1>024</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Quantum dots and nanostructures</s1>
<s2>07</s2>
<s3>San Francisco CA USA</s3>
<s4>2010</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000097 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000097 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:11-0031979
   |texte=   Quantum dots for single and entangled photon emitters
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024